- vừa được xem lúc

Fine-tuning một cách hiệu quả và thân thiện với phần cứng: Adapters và LoRA

0 0 26

Người đăng: Nguyen Mai

Theo Viblo Asia

Fine-tuning là gì?

Trong Machine Learning, Fine-tuning là một phương pháp của transfer learning, sử dụng weight của một pre-trained model để train với một bộ data mới, phù hợp với mục đích của người dùng và số lượng dataset thường nhỏ hơn khi pre-train. Việc làm này giúp tăng độ chính xác của model so với việc train trực tiếp với bộ dataset nhỏ của chúng ta. Thông thường, khi thực hiện fine-tuning, ta sẽ phải train toàn bộ hoặc một số layers của model, và cũng phải lưu lại toàn bộ các tham số của model hoặc một số layers của model được fine-tune luôn. Tức là với 10 downstream tasks, ta sẽ phải train toàn bộ model 10 lần, xong lại lưu lại weight của cả 10 models. Đối với những model nhỏ thì điều này không phải là một vấn đề lớn, tuy nhiên, trong cái kỉ nguyên mà người người nhà nhà sử dụng các model cực nặng, từ vài trăm triệu đến vài tỉ tham số: Stable Diffusion, LLaMA, yada yada,... thì việc train toàn bộ model, và lưu toàn bộ model là một vấn đề cực kì khó khăn với những người bị giới hạn về mặt phần cứng.

Parameter-efficient Fine-tuning (PEFT) với Adapters

Năm 2019, Neil Housby và đồng bọn đã nghĩ ra một cách fine-tuning một cách hiệu quả và thử áp dụng vào BERT-large: Ở mỗi khối Transformer trong model, ta chèn thêm vào 2 lớp Adapters (Hình 1) trước khi thực hiện fine-tuning. Cái hay ở đây là ta chỉ thực hiện training các lớp Adapters được chèn vào model thôi, và freeze toàn bộ pre-trained model trong quá trình fine-tuning.

Hình 1. 2 lớp Adapters được chèn vào mỗi khối Transformer

Việc freeze toàn bộ pre-trained model và chỉ train các lớp Adapters khiến số parameters cần phải train giảm đáng kể, do đó làm quá trình training ngốn ít tài nguyên hơn rất nhiều. Để mình giải thích tại sao việc giảm số parameters cần phải train lại giúp quá trình training ngốn ít tài nguyên hơn nhé.

Khi chúng ta training một Neural Network (NN) và sử dụng GPU, thì lúc này, Video RAM (VRAM) của GPU sẽ cần phải lưu trữ:

  • Model weight
  • Optimizer states (trạng thái của optimizer)
  • Gradients (đạo hàm)
  • Forward activations để tính gradients nhanh hơn
  • Và một số thứ khác nữa

Khi ta freeze toàn bộ pre-trained model, thì ta sẽ không cần tính toán gradients cho chúng, cũng như không cần phải ghi nhớ lại activations của các lớp đã freeze \rightarrow giảm lượng VRAM cần thiết để lưu Gradients và Forward activations.

Không chỉ dừng lại ở việc ngốn ít tài nguyên hơn khi training, việc sử dụng Adapters còn ngốn ít tài nguyên hơn trong việc lưu trữ. Giờ đây, sau mỗi lần fine-tuning, thay vì phải lưu weight của model có độ nặng từ vài trăm Mb đến vài chục Gb, ta chỉ cần lưu weight của Adapters cực kì nhẹ (vài Mb). Lúc này, việc chia sẻ Adapters cho người khác thì dễ dàng hơn rất nhiều là chia sẻ cả model.

Tưởng tượng một trường hợp như này: Bạn đang có weight của Stable Diffusion 1.5 (SD 1.5) chuyên sinh ảnh gái kiểu người thật nặng 4Gb, giờ bạn muốn cái SD 1.5 của bạn sinh ảnh gái alime, thay vì phải down nguyên cái SD 1.5 nặng 4Gb nữa chuyên sinh ảnh gái alime, thì bạn chỉ cần down Adapters chuyên sinh ảnh gái alime của SD 1.5 nhẹ tầm 30-100Mb thôi, và cắm nó vào cái SD 1.5 của bạn.

Một lý do nữa cho việc fine-tuning sử dụng Adapters thay vì model đó chính là vấn đề lãng quên task cũ của model khi thực hiện fine-tuning trên task mới. Tuy nhiên, mình sẽ không nói tại đây vì bài này mình muốn nói về tài nguyên training khi sử dụng Adapter.

Vào năm 2020, Pfeiffer và đồng bọn đã tạo ra AdapterHub, một nơi chuyên để chia sẻ Adapter. Đúng vậy, thay vì chia sẻ model, thì mọi người bây giờ lại chia sẻ Adapter cho nhau (Hình 2).

Hình 2. AdapterHub - nơi mọi người có thể chia sẻ Adapter cho nhau

Low-rank Adaptation: LoRA

Điểm yếu của Adapters thông thường

Như mình đã nói ở trên, sử dụng Adapters tức là ta phải chèn thêm vào model các lớp Adapters. Tức là trong quá trình forward của model, độ nặng tính toán tăng lên, và không có cách trực tiếp nào để loại bỏ quá trình tính toán thêm này của Adapters. Mặc dù độ nặng tính toán của từng layer Adapter là nhỏ, tuy nhiên, như đã nhắc tớ ở trong VoVNet, việc chèn thêm nhiều layer nhỏ sẽ làm tăng số phép tính tuần tự của model, giảm khả năng tính toán song song của GPU \rightarrow không tận dụng tốt khả năng tính toán song song của GPU.

Quá trình Fine-tuning

Hình 3. Quá trình cập nhật một layer của model trong fine-tuning

Quá trình weight của một layer được thay đổi như thế nào khi fine-tune được thể hiện ở Hình 3. Pre-trained weights WW của model sẽ biến thành updated weights WW^{'} dựa trên giá trị weight cần thay đổi ΔW\Delta W thu được từ quá trình backprop. Và ở iteration tiếp theo, WW^{'} lại được update với một ΔW\Delta W khác.

Quá trình forward sau mỗi iteration như sau:

Iteration 0:y=WxIteration 1:y=Wx=(W+ΔW)xIteration 2:y=Wx=(W+ΔW)x=(W+(ΔW+ΔW))x\text{Iteration 0:} \quad y = Wx \\ \text{Iteration 1:} \quad y = W^{'}x = (W + \Delta W)x \\ \text{Iteration 2:} \quad y = W^{''}x = (W^{'} + \Delta W^{'})x = (W + (\Delta W + \Delta W^{'}))x \\ \cdot \cdot \cdot

Hình 4. Fine-tuning nhưng thay vì update W thì ta update delta W

Giờ thử nhìn quá trình cập nhật của fine-tuning theo 1 cách nhìn khác nhé (Hình 4). Tại mỗi iteration, thay vì cập nhật WW thì ta cập nhật ΔW\Delta W (Như cách mình cố tình biểu diễn iteration 2 ở phía trên). Lúc này, pre-trained weights WW sẽ luôn được giữ nguyên (freeze), và ta chỉ cần biết được toàn bộ ΔW\Delta W là có thể thu được model weight sau finetune bằng cách cộng WW với ΔW\Delta W.

Biểu diễn delta W

Mục đích của LoRA là tìm cách biểu diễn ma trận ΔW\Delta W thành một dạng biểu diễn nhẹ hơn. Năm 2020, có một paper nói rằng những mô hình ngôn ngữ pre-trained có intrinsic dimension (hay intrinsic rank) cực kì thấp, tức là, model này có thể được biểu diễn sử dụng số chiều ít hơn rất nhiều so với số chiều gốc của model, mà vẫn giữ được performance khi đem đi fine-tune.

Tận dụng ý tưởng này, nhóm tác giả của LoRA cũng cho rằng, ΔW\Delta W cũng có thể được biểu diễn với số chiều ít hơn rất nhiều số chiều gốc của ΔW\Delta W. LoRA chọn sử dụng Matrix decomposition để biểu diễn ma trận ΔW\Delta W bằng tích của các ma trận con với độ nặng tính toán thấp hơn việc tính trên ma trận gốc. Có rất nhiều phương pháp Matrix decomposition (LU decomposition, Singular Value Decomposition, ...), và LoRA chọn sử dụng phương pháp Neural Network :v

Hình 5. LoRA tách ma trận Delta W thành 2 ma trận con A và B

LoRA phân tách ma trận ΔW\Delta W thành 2 ma trận con AABB với số rank thấp hơn rất nhiều ma trận ban đầu. Cụ thể, ΔW=BA\Delta W = BA với ΔWRd×k,BRd×r,ARr×k\Delta W \in \R^{d \times k}, B \in \R^{d \times r}, A \in \R^{r \times k} và số rank rmin(d,k)r \ll min(d,k). Lúc này, output của layer đó sẽ trở thành:

y=W0x+ΔWx=W0x+BAxy = W_0 x + \Delta W x = W_0 x + BAx

Ma trận AA được khởi tạo theo random Gaussian init, còn ma trận BB thì được khởi tạo toàn 0, vậy nên ΔW=BA\Delta W = BA có giá trị 00 khi bắt đầu training. Và quá trình training sẽ tối ưu để tìm ra ma trạn AABB.

Tại sao phân tách ma trận ΔW\Delta W thành 2 ma trận AABB lại khiến tính toán nhẹ đi?

Hình 6. Phân rã ma trận

Nhìn vào Hình 6, số phần tử mà ma trận ΔW\Delta W ban đầu có là A×BA \times B, còn số phần từ mà sau khi phân rã ma trận ΔW\Delta W thành 2 ma trận AABB có là: B×r+A×rB \times r + A \times r. Thử thay số vào nhé. Chọn A=B=100,r=4A = B = 100, r = 4. Số phần tử của ma trận ΔW\Delta W trước phân rã là: 100×100=10000100 \times 100 = 10000, số phần tử sau phân rã là 100×4+100×4=800100 \times 4 + 100 \times 4 = 800, ít hơn tới 12.512.5 lần.

Để có thể phân tách được một layer Linear, LoRA thêm vào Linear layer đó 2 lớp Linear nữa, mỗi lớp Linear đại diện cho ma trận AABB. Lúc này nó giống như việc training một NN bình thường thôi. Chú ý là, hiện tại LoRA mới chỉ hỗ trợ phân tách weight của layer Linear, và chưa hỗ trợ cho những layer khác.

Tại sao LoRA cũng thêm layers vào mà không bị chậm giống Adapters thông thường?

Đúng, bản chất LoRA chính là Adapters, cũng là thêm các Adapters vào trong model. Nhưng cái hay của LoRA là nó có thể Re-parameterize sau khi training xong. Về kĩ thuật Re-parameterize, mình đã có nói qua ở đây. Trong quá trình training, việc forward qua model vẫn chậm, nhưng sau khi train xong, thu được AABB, ta sẽ thực hiện một phép Re-parameterize cực kì đơn giản:

Trước Re-parameterize:y=Wx+BAxSau Re-parametereize:y=(W+BA)x\text{Trước Re-parameterize:} \quad y = Wx + BAx \\ \text{Sau Re-parametereize:} \quad y = (W + BA)x

Lúc này, 2 Linear layers đại diện cho AABB đã được gộp vào Linear layer ban đầu, thế là lại chỉ còn một Linear layer.

Kết

Với việc chia sẻ LoRA của Stable Diffusion đầy rẫy trên mạng, hy vọng sau bài này các bạn đã hiểu được LoRA là gì, tại sao nó lại nhẹ hơn model Stable Diffuision, và nó có ích như thế nào.

Bình luận

Bài viết tương tự

- vừa được xem lúc

Tấn công và phòng thủ bậc nhất cực mạnh cho các mô hình học máy

tấn công bậc nhất cực mạnh = universal first-order adversary. Update: Bleeding edge của CleverHans đã lên từ 3.1.0 đến 4.

0 0 42

- vừa được xem lúc

[Deep Learning] Key Information Extraction from document using Graph Convolution Network - Bài toán trích rút thông tin từ hóa đơn với Graph Convolution Network

Các nội dung sẽ được đề cập trong bài blog lần này. . Tổng quan về GNN, GCN. Bài toán Key Information Extraction, trích rút thông tin trong văn bản từ ảnh.

0 0 219

- vừa được xem lúc

Trích xuất thông tin bảng biểu cực đơn giản với OpenCV

Trong thời điểm nhà nước đang thúc đẩy mạnh mẽ quá trình chuyển đổi số như hiện nay, Document Understanding nói chung cũng như Table Extraction nói riêng đang trở thành một trong những lĩnh vực được quan tâm phát triển và chú trọng hàng đầu. Vậy Table Extraction là gì? Document Understanding là cái

0 0 230

- vừa được xem lúc

Con đường AI của tôi

Gần đây, khá nhiều bạn nhắn tin hỏi mình những câu hỏi đại loại như: có nên học AI, bắt đầu học AI như nào, làm sao tự học cho đúng, cho nhanh, học không bị nản, lộ trình học AI như nào... Sau nhiều lần trả lời, mình nghĩ rằng nên viết hẳn một bài để trả lời chi tiết hơn, cũng như để các bạn sau này

0 0 157

- vừa được xem lúc

[B5'] Smooth Adversarial Training

Đây là một bài trong series Báo khoa học trong vòng 5 phút. Được viết bởi Xie et. al, John Hopkins University, trong khi đang intern tại Google. Hiện vẫn là preprint do bị reject tại ICLR 2021.

0 0 45

- vừa được xem lúc

Deep Learning với Java - Tại sao không?

Muốn tìm hiểu về Machine Learning / Deep Learning nhưng với background là Java thì sẽ như thế nào và bắt đầu từ đâu? Để tìm được câu trả lời, hãy đọc bài viết này - có thể kỹ năng Java vốn có sẽ giúp bạn có những chuyến phiêu lưu thú vị. DJL là tên viết tắt của Deep Java Library - một thư viện mã ng

0 0 139