- vừa được xem lúc

Khoá học Active Learning - Bài 3.2 - Deep Bayesian Active Learning - Thực Hành

0 0 23

Người đăng: Phạm Văn Toàn

Theo Viblo Asia

Khoá học Active Learning là một trong những khoá học nằm trong chuỗi các khoá học miễn phí của Sun* AI Research chia sẻ về các chủ đề nhỏ trong lĩnh vực AI. Khoá học cung cấp kiến thức và các thuật toán cơ bản của Active Learning - một kĩ thuật rất hữu ích trong dự án thực tế với trường hợp chi phí gán nhãn dữ liệu hạn chế. Trong bài học này chúng ta sẽ cùng nhau thực hành và so sánh mức độ hiệu quả của hai thuật toán mới trong Uncertainty Sampling đó là:

  • Bayesian Neural Network
  • Monte Carlo Dropout

Rất mong các bạn ủng hộ team Sun* AI Research trong chuỗi các khoá học miễn phí dành cho cộng đồng nhé.

Bình luận

Bài viết tương tự

- vừa được xem lúc

Golang Data Structures and Algorithms - Stack

Giới thiệu. Series về cấu trúc dữ liệu và thuật toán sử dụng Golang.

0 0 37

- vừa được xem lúc

AWS Certified Solutions Architect Professional - Security - Secrets Manager

Introduction. A quick note about AWS Secrets Manager.

0 0 44

- vừa được xem lúc

Golang Data Structures and Algorithms - Queue

Giới thiệu. Series về cấu trúc dữ liệu và thuật toán sử dụng Golang.

0 0 47

- vừa được xem lúc

Terraform Series - Bài 17 - Security - Manage Secrets with Vault

Giới thiệu. Chào các bạn tới với series về Terraform, ở bài trước chúng ta đã tìm hiểu về vấn đề security trong Terraform.

0 0 37

- vừa được xem lúc

Golang Data Structures and Algorithms - Linked Lists

Giới thiệu. Series về cấu trúc dữ liệu và thuật toán sử dụng Golang.

0 0 36

- vừa được xem lúc

AWS Certified Solutions Architect Professional - Security - AWS Certificate Manager

Introduction. A quick note about AWS Certificate Manager.

0 0 31