- vừa được xem lúc

TOP CÁC CÔNG CỤ DATA ENGINEER CẦN HỌC

0 0 28

Người đăng: Trưởng Nguyễn

Theo Viblo Asia

Data Engineering là một trong những công việc hấp dẫn nhất thế kỷ 21 bởi mức lương tốt và cơ hội việc làm rộng mở. Trong doanh nghiệp, Data Engineer chịu trách nhiệm thiết kế, xây dựng và bảo trì các luồng dữ liệu.

Vậy bạn cần học sử dụng những công cụ gì để trở thành một Data Engineer? Các kỹ năng cần thiết của một Data Engineer là gì? Hãy cùng INDA tìm hiểu nhé!

Đọc thêm:

KHOÁ HỌC TRUY VẤN VÀ THAO TÁC DỮ LIỆU SQL TỪ CƠ BẢN ĐẾN NÂNG CAO

KHÓA HỌC DATA WAREHOUSE : TỔNG HỢP, CHUẨN HÓA VÀ XÂY DỰNG KHO DỮ LIỆU TRONG DOANH NGHIỆP

KHÓA HỌC DATA MODEL – THIẾT KẾ MÔ HÌNH DỮ LIỆU TRONG DOANH NGHIỆP

LỘ TRÌNH TRỞ THÀNH DATA ENGINEER CHO NGƯỜI MỚI BẮT ĐẦU

DATA ENGINEER LÀ GÌ? CÔNG VIỆC CHÍNH CỦA DATA ENGINEER? CÁC KỸ NĂNG CẦN THIẾT

1. Database tools

Lưu trữ, sắp xếp và quản lý khối lượng dữ liệu khổng lồ là rất quan trọng đối với vị trí Data Engineering. Do đó bạn cần có sự hiểu biết sâu sắc về thiết kế và kiến trúc cơ sở dữ liệu là rất quan trọng. Hai cơ sở dữ liệu thường được sử dụng là structured query language (SQL) và NoSQL-based. Trong khi các cơ sở dữ liệu dựa trên SQL như MySQL và PL/SQL được sử dụng để lưu trữ dữ liệu có cấu trúc được sử dụng các công nghệ như Cassandra, MongoDB và các công nghệ khác có thể lưu trữ khối lượng lớn dữ liệu theo yêu cầu của ứng dụng.

2. Data transformation tools – Công cụ chuyển đổi dữ liệu

Big data có mặt ở định dạng thô và không thể được sử dụng trực tiếp. Big data cần được chuyển đổi thành định dạng tiêu thụ dựa trên trường hợp sử dụng để xử lý nó. Chuyển đổi dữ liệu có thể đơn giản hoặc phức tạp tùy thuộc vào các nguồn dữ liệu, định dạng. Chính vì vậy mà bạn cần biết và sử dụng thành thạo một số công cụ chuyển đổi dữ liệu. Một số công cụ chuyển đổi dữ liệu phổ biến như Oracle ODI, SSIS, HEVO, Matillion, Talend, Pentaho Data Integration, InfoSphere DataStage v.v.

3. Data ingestion tools – Công cụ nhập dữ liệu

Nhập dữ liệu là một trong những phần thiết yếu của các kỹ năng dữ liệu lớn và là quá trình di chuyển dữ liệu từ một hoặc nhiều nguồn đến nơi nó có thể được phân tích. Khi số lượng của dữ liệu tăng lên, việc nhập dữ liệu trở nên phức tạp hơn, yêu cầu các Data Engineer phải biết các công cụ nhập dữ liệu và API để ưu tiên các nguồn dữ liệu, xác minh chúng và gửi dữ liệu để đảm bảo quy trình nhập hiệu quả. Một số công cụ nhập dữ liệu cần biết là Apache Kafka, Apache Storm, Apache Flume, Apache Sqoop, Wavefront, v.v.

4. Data mining tools – Công cụ khai thác dữ liệu

Một kỹ năng quan trọng khác để xử lý Big Data là khai thác dữ liệu liên quan đến việc trích xuất thông tin quan trọng để tìm các mẫu trong các bộ dữ liệu lớn và chuẩn bị chúng để phân tích. Khai thác dữ liệu giúp thực hiện phân loại dữ liệu và dự đoán. Một số công cụ khai thác dữ liệu mà các chuyên gia dữ liệu lớn phải thực hành là Apache Mahout, Knime, Rapid Miner, Weka, v.v.

5. Data warehousing and ETL tools – Kho dữ liệu và các công cụ ETL

Data Warehouse và ETL giúp các công ty tận dụng Big Data một cách có ý nghĩa. Nó hợp lý hóa dữ liệu đến từ các nguồn không đồng nhất. ETL hoặc Extract Transform Load lấy dữ liệu từ nhiều nguồn, chuyển đổi nó để phân tích và tải dữ liệu đó vào warehouse. Một số công cụ ETL phổ biến bạn cần biết sử dụng là Oracle ODI, SSIS, IBM Data Stage, Talend, Informatica PowerCenter, AWS Glue, Stitch, v.v.

Đọc thêm:

KHOÁ HỌC TRUY VẤN VÀ THAO TÁC DỮ LIỆU SQL TỪ CƠ BẢN ĐẾN NÂNG CAO

KHÓA HỌC DATA WAREHOUSE : TỔNG HỢP, CHUẨN HÓA VÀ XÂY DỰNG KHO DỮ LIỆU TRONG DOANH NGHIỆP

KHÓA HỌC DATA MODEL – THIẾT KẾ MÔ HÌNH DỮ LIỆU TRONG DOANH NGHIỆP

LỘ TRÌNH TRỞ THÀNH DATA ENGINEER CHO NGƯỜI MỚI BẮT ĐẦU

DATA ENGINEER LÀ GÌ? CÔNG VIỆC CHÍNH CỦA DATA ENGINEER? CÁC KỸ NĂNG CẦN THIẾT

Bình luận

Bài viết tương tự

- vừa được xem lúc

Nhập môn lý thuyết cơ sở dữ liệu - Phần 2: Mô hình thực thể liên kết

**Chào các bạn, hôm nay mình tiếp tục viết tiếp phần 2 cho series Nhập môn lý thuyết cơ sở dữ liệu. Chắc hẳn qua bài trước các bạn tìm được lý do vì sao mình phải học môn này rồi chứ.

0 0 68

- vừa được xem lúc

Các vai trò chính trong Data Ecosystem - [Data Analyst Series]

Ngày nay, các tổ chức đang sử dụng dữ liệu để khám phá các cơ hội và mang lại lợi ích trong tương lai. Điển hình là tạo các mô hình trong các giao dịch tài chính để phát hiện gian lận, sử dụng các côn

0 0 47

- vừa được xem lúc

Tìm hiểu về Apache Spark

Ngày nay có rất nhiều hệ thống đang sử dụng Hadoop để phân tích và xử lý dữ liệu lớn. Ưu điểm lớn nhất của Hadoop là được dựa trên một mô hình lập trình song song với xử lý dữ liệu lớn là MapReduce, m

0 0 52

- vừa được xem lúc

Data Warehouse là gì? Top 7 ứng dụng quan trọng của kho dữ liệu

Data Warehouse là gì? Lợi ích và ứng dụng của kho dữ liệu Data Warehouse là gì? Với sự bùng nổ về mặt thông tin và dữ liệu như hiệu này thì đây luôn là những câu hỏi được rất nhiều bạn thắc mắc, đặc b

0 0 35

- vừa được xem lúc

Phân biệt: Database, Data Warehouse, Data Mart, Data Lake, Data Lakehouse, Data Fabric, Data Mesh

Chào mọi người,. Hôm nay, tiếp tục Series Phân tích dữ liệu kinh doanh, mình sẽ chia sẻ với mọi người những khái niệm phổ biến nhất liên quan về thiết kế hệ thống dữ liệu bên dưới nhé, vì khi làm phân

0 0 39

- vừa được xem lúc

Kỹ sư dữ liệu và lộ trình trở thành data engineer (DE) với 4 bước

Data Engineer hay còn gọi là kỹ sư dữ liệu là một trong những vị trí quan trọng trong lĩnh vực khoa học dữ liệu. Với sự phát triển của kỷ nguyên số, nhu cầu chuyển đổi số của các doanh nghiệp ngày càn

0 0 36