- vừa được xem lúc

How Does Programming Language Help in AI Development?

0 0 49

Người đăng: Kenneth Evans

Theo Viblo Asia

So, did you hear that Facebook is now Meta? Well, of course, you did. Whom am I kidding? But you had a little bit of idea of that, but you actually don’t know what all this metaverse and Artificial intelligence and all that stuff work like. Before we jump into that let me tell you that it is worth jumping into this, and trust me that you are going to love this article.

You can not even imagine what could be possible with AI-powered tools and Artificial intelligence development by top software companies. There are numerous opportunities and vast possibilities to explore in this field. I am not exaggerating but in marketing, there are so many AI-powered tools and technologies that can make your work very easy.

Well, It’s one of the benefits of Artificial intelligence. AI development can be useful in many ways. So why don’t you try to develop an AI-powered tool? Not lying you can make a hell of money with that thing. But first of all, you will need to understand what kind of programming languages you need to build an Artificial Intelligence.

Well more specifically let me introduce some of the Programming languages to build an AI. Wait do you know what AI is? No? So you will need to know that first.

What the Hell is Artificial intelligence

Artificial intelligence particularly depends on an Intelligent machine, or you can say that it means a literal intelligent machine that can solve any particular problem. You will be wrong if you say that you’ve never witnessed artificial intelligence.

People don’t believe without proof, so let me tell you this, did you ever talk with Alexa, Siri, or Google, well what do you call it? It is artificial intelligence at your fingertips sir.

3 Best Programming languages to Build an AI

Python

Python is a high-level programming language. Which is used for general purposes. Developers like this language because of its particular benefits of it. First of all, it is well equipped and has a simple syntax. Not to mention its high maintainability.

The best benefit of python is that you will get to handle high-level projects that will be friendly to handle. Machine learning is that part of Artificial intelligence that helps them to make algorithms.

So which is the most popular framework of Python?

Before revealing its name let’s discuss its benefits. Well, it is an open-source machine learning library. It is non-other than TensorFlow, yes it is the best framework of Python. With the help of Python, TensorFlow can train deep neural networks.

There are so many libraries on this list. Let me name you some of them.

  • SciPy
  • Nltk
  • Keras
  • Theano
  • Pandas

Machine learning is not the only field where you can use this library. You can also use this library in Natural Language Processing. Which is indeed used to maintain mathematical expression.

Okay! It’s a whole different topic. Sure we are going to discuss that but at some other time. Python is the easiest language and you will be stunned by its benefits.

Lisp

Talking about AI, Lisp is one of the oldest programming languages in circulation for the development of AI. Actually, Lisp is the short form of list processing. Well, List Processing is not the only thing done by the Lisp. But surely it is one of its applications. Lisp originated in 1958.

Thanks to John McCarthy, the language got high on performance and now it is able to address the problems of Artificial intelligence. This all happened in mere 4 years of its origination. I mean McCarthy helped Lisp in 1962.

Well, developers do not prefer the language that much. Because it has a complicated syntax and difficult libraries. Although there are some projects in which Lisp can be a great choice of adopting a programming language.

  • Rapid Prototype
  • It has dynamic object creation
  • Modifies programs as data
  • Has garbage collection

Java

Java, there is no one who has not heard this name. Well, I heard it and I know pretty much about it. So, let me give that knowledge to you. You can use java on any platform from anywhere. Well, you can do this with the virtual machine.

The developers of android can work with Kotlin, also Java is a native language for android application development.

There is nothing new about this and every mobile application developer knows that AI can be very profitable and is one of the best application development trends.

Java does not only work for android app development, it has its own library to do natural language processing. You can also check out the libraries mentioned below.

  • Kubeflow
  • OpnNLP
  • Deep Java Library
  • Neuroph

Java has an object-oriented design and it is much easier to work with.

Conclusion

The bottom line is that you can build an AI-powered tool on your own but you will have to have a knowledge of all kinds of programming languages. Well, the list is long, but these three are languages that are the most relevant to building AI tools and technology. So why don’t you try to learn one of them and build a tool that can help everyone? Hyperlink InfoSystem Reviews by Top App Development Companies - one of the top AI development companies.

Bình luận

Bài viết tương tự

- vừa được xem lúc

Hành trình AI của một sinh viên tồi

Mình ngồi gõ những dòng này vào lúc 2h sáng (chính xác là 2h 2 phút), quả là một đêm khó ngủ. Có lẽ vì lúc chiều đã uống cốc nâu đá mà giờ mắt mình tỉnh như sáo, cũng có thể là vì những trăn trở về lý thuyết chồng chất ánh xạ mình đọc ban sáng khiến không tài nào chợp mắt được hoặc cũng có thể do mì

0 0 148

- vừa được xem lúc

[Deep Learning] Key Information Extraction from document using Graph Convolution Network - Bài toán trích rút thông tin từ hóa đơn với Graph Convolution Network

Các nội dung sẽ được đề cập trong bài blog lần này. . Tổng quan về GNN, GCN. Bài toán Key Information Extraction, trích rút thông tin trong văn bản từ ảnh.

0 0 219

- vừa được xem lúc

Tìm hiểu về YOLO trong bài toán real-time object detection

1.Yolo là gì. . Họ các mô hình RCNN ( Region-Based Convolutional Neural Networks) để giải quyết các bài toán về định vị và nhận diện vật thể.

0 0 285

- vừa được xem lúc

Encoding categorical features in Machine learning

Khi tiếp cận với một bài toán machine learning, khả năng cao là chúng ta sẽ phải đối mặt với dữ liệu dạng phân loại (categorical data). Khác với các dữ liệu dạng số, máy tính sẽ không thể hiểu và làm việc trực tiếp với categorical variable.

0 0 259

- vừa được xem lúc

TF Lite with Android Mobile

Như các bạn đã biết việc đưa ứng dụng đến với người sử dụng thực tế là một thành công lớn trong Machine Learning.Việc làm AI nó không chỉ dừng lại ở mức nghiên cứu, tìm ra giải pháp, chứng minh một giải pháp mới,... mà quan trọng là đưa được những nghiên cứu đó vào ứng dụng thực tế, được sử dụng để

0 0 73

- vừa được xem lúc

Xây dựng hệ thống Real-time Multi-person Tracking với YOLOv3 và DeepSORT

Trong bài này chúng ta sẽ xây dựng một hệ thống sử dụng YOLOv3 kết hợp với DeepSORT để tracking được các đối tượng trên camera, YOLO là một thuật toán deep learning ra đời vào tháng 5 năm 2016 và nó nhanh chóng trở nên phổ biến vì nó quá nhanh so với thuật toán deep learning trước đó, sử dụng YOLO t

0 0 317